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Abstract

In this paper, we consider a Van der Pol-Duffing oscillator that is excited parametrically by a small
intensity real noise, which is assumed to be an integrable function of an n-dimensional Ornstein—Uhlenbeck
vector process that is an output of a linear filter system. The stability properties include the moment
Lyapunov exponent g(p, xo) and the maximal Lyapunov exponent, and the stability in probability are
examined. To study a model of enhanced generality, we remove both the detailed balance condition and the
strong mixing condition. In the case of an arbitrary finite real number p, we employ the perturbation
method and a spectrum representation of the Fokker—Planck operator of the linear filter system to
construct asymptotic expansions of the pth moment Lyapunov exponent and the top Lyapunov exponent.
The same methods are also used for a nonlinear stochastic system to obtain the FPK (Fokker—Planck—
Kolmogonov) equation for the amplitude process, which is identical to the one that is derived from the
stochastic averaging method in the case of a broadband noise excitation. On the basis of this FPK equation,
we also examine the almost-sure stability condition of the Ito stochastic differential equation for the
amplitude process, which matches the result that is derived from the maximal Lyapunov exponent. Finally,
the method proposed by Lin and Cai (Probabilistic Structural Dynamics, Advanced Theory and
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Application, McGraw-Hill, New York, 1995) is adopted to examine the stability in probability of the
amplitude process for the nonlinear Ito differential equation.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The maximal Lyapunov exponent has been effectively employed as an important index in
defining the stochastic bifurcation point for a random dynamical system in the probability 1 sense,
which is called the dynamic bifurcation point [1,2]. This is mainly attributed to the fact that the
Lyapunov exponent characterizes the exponential rate of change of the response of a random
dynamical system, and therefore the sample or the almost-sure stability of the stationary solution
of a random dynamical problem depends on the sign of the maximal Lyapunov exponent. A
general method for exactly evaluating the maximal Lyapunov exponent of a linear Ito stochastic
differential equation was first presented by Khasminskii [3], and has been successfully employed
for two-dimensional Ito stochastic systems by Kozin and Prodromou [4], Nishioka [5],
Ariaratnam and Xie [6], and many other researchers.

In the case of ergodic and real noise excitations, there are some results that refer to the
asymptotic expansions of top Lyapunov exponents, most of which are due to Arnold et al. [7],
Namachchivaya and Roessel [8], Doyle and Namachchivaya [9], and Liu and Liew [10-12]. For a
real noise system that does not meet the strong mixing condition, the stochastic averaging method
is not available, and one has to resort to a perturbation method [7]. However, even for an almost-
sure stable system, there is a probability that the mean square response for the system may still
exceed some threshold and may grow exponently, which implies that the mean square response is
unstable.

Let x(z,x¢) be a solution to a random dynamical system. To describe the exponential growth
rate of its pth (p>0) moment, we can define the moment Lyapunov exponent as

. 1
g(p, x0) = rlgglo " log E|lx(t, xo)II”, peR, )

which implies that if g(p, x¢) <0, then E|x(z, xo)||” — 0 as ¢t — oo, whereas if g(p, xo)>0, then
E||x(t, x9)||” — oo as t — oo. In Ref. [13], it has been shown that, under the conditions specified,
the limit in Eq. (1) exists and is independent of x(. It can then be expressed as g(p), which is a
convex analytic function of peR, g(p)/p is increasing, and
A= a—g = lim ! log ||x(z, xo)II’, p€R, 2)
pl,—g 1ot
which is the maximal Lyapunov exponent.

In accordance with the large-deviation theory [2,14], if there is a non-zero solution ¢ of the
equation g(p) =0, then it is unique and is called the stability index. It has been shown that if the
trivial solution x=0 of an Ito linear stochastic differential equation is almost-sure stable, then
the probability of exit from the ball |x||<r has the order of ||x||° for x—0 for any r>0, and
the solution x=0 is exponentially p-stable for p<J and exponentially p-unstable for p>4,
which results in the stability condition for the pth moment.
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Comparatively, the problems that arise in the asymptotic analysis of moment Lyapunov
exponents become much more complicated than those that arise in the analysis of maximal
Lyapunov exponents, and furthermore there are not as many existing results for moment
Lyapunov exponents as for maximal Lyapunov exponents. For a white and real noises excited
two-dimensional system and a system of two coupled oscillators that is driven by a real noise,
Arnold et al. [15] and Namachchivaya et al. [16] obtain the asymptotic expansions of the pth
moment Lyapunov exponents in the case of small noise intensity and a small p. The idea is that
one can obtain the asymptotic expansion in powers of the small noise intensity for the maximal
Lyapunov exponent A=0g(0)/0p. The same is also true for 8"¢(0)/0p". Finally, one can obtain the
Taylor series of the pth moment Lyapunov exponent in terms of a small p. These formulas,
however, are rather complicated, and the approximation is only valid for a small p, which does
not allow us to compute, for example, the stability index.

Khasminskii and Moshchuk [14] consider a two-dimensional system with small white noise
excitations. They prove that for a system in which the system matrix has two purely imaginary
eigenvalues, the pth moment Lyapunov exponent possesses an asymptotic expansion in terms of
the small noise intensity for a finite value of p. For a system of two coupled oscillators that is
driven by real noises, Namachchivaya and Roessel [17] obtain the asymptotic expansion of the
moment Lyapunov exponent for a finite p. In Ref. [17], the extension of the perturbation method
that was introduced by Arnold et al. [7] is applied.

In this paper, we consider a Van der Pol-Duffing oscillator that is excited parametrically by a
small intensity real noise, which is assumed to be an integrable function of an n-dimensional
Ornstein—Uhlenbeck vector process that is an output of a linear filter system. A detailed study is
carried out on the stability properties, including the pth moment Lyapunov exponent g(p,x), the
maximal Lyapunov exponent, and the stability in probability. In this work, we propose a model of
enhanced generality that removes the detailed balance condition and also the strong mixing
condition that is the prerequisite for the stochastic averaging method. To tackle the difficulties
encountered, for an arbitrary finite p, the perturbation method and a spectrum representation of
the Fokker—Planck operator for the linear filter system are employed to construct the asymptotic
expansion of the pth moment Lyapunov exponent and the top Lyapunov exponent. Using the
same methods for a nonlinear stochastic system, we obtain the FPK equation of the amplitude
process, which is identical to that which is derived from the stochastic averaging method in the
case of a broadband noise excitation. Based on this FPK equation, we can examine the almost-
sure stability condition of the amplitude process, which matches the result that is derived from the
expression of the maximal Lyapunov exponent. To investigate the stability in probability of the
amplitude process, the method proposed by Lin and Cai [1] is adopted in this study.

2. Spectral analysis for a linear filter system

In this section, we review the existing results for the spectral analysis of an n-dimensional linear
filter system. Consider a general linear filter system, which is governed by the following stochastic
differential system:

u(?) = Au(?) + W(2), (3)
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where A= (ajj).xn; a; are the real or complex numbers, W(?) is an n-dimensional zero-mean
Gaussian white noise with E (W(z + 1)W(?)) = Vi(), V= (vj)uxn 1s @ symmetric, non-negative
defined constant matrix, and u=(u, up, ..., u,,)T is an Ornstein—Uhlenbeck vector process, which
is in fact a zero-mean stationary Gaussian diffusion process. The matrix A is assumed to have a
complete set of eigenvalues a4, ..., «,, along with the corresponding eigenvectors ey, ..., e,, which
means that o;.,, (i#/). Furthermore, as in Ref. [18], the following two conditions are assumed in
the present study:

(a) Each eigenvalue o; is assumed to possess a negative real part, i.e., R(oc,-)<£)~(%: 1,2,...,n).
(b) (A, V) is a controllable pair, i.e., rank(V,AV,... ,A”_IV) =n, where V=VV .

In fact, the first condition assures that the equilibrium solution u=0 for the relevant
deterministic system is Lyapunov asymptotically stable.

For the diffusion process u(?), the differential generator (backward Kolmogorov operator) L,
and its adjoint, the Fokker—Planck operator L;, are, respectively, given by

1 o d 1 o?
Ly = —lajuj] — svj5——
[ajuj] 2 Vi Guiﬁuj

+ v —,
2 v Gu,@uj " aui
where the repeated indices indicate the usual summation. Correspondingly, the Kolmogorov
backward equation, the FPK equation, and their initial conditions are

(4)

/ ]aui

0 0
—J’_Lll() (1(“,”“0: tO) = 0: _+L: p(u7[|u0, ZO) = Oa
Oty ot

q(u, t|ug, 1) = 6(ug — ),  p(u, o |ug, 79) = o(u — ug). Q)

For the system that is described in Eq. (3), the stationary probability density function for u(?),
which is the solution to the degenerate FPK equation Op(u, | ug, #p) /0t = 0, is

pyw) = N exp[—1u"K;'u], N = 2n) " *[det K,]'/?, (6)

where N is the normalization constant, and K, = {u(¢)(u(¢))" > is the covariance matrix, which is
the solution of the steady-state variance equation

AK, +K,AT +V =0. (7

In this study, U=(ey, e5,...,¢,) is assumed to be the relevant eigenmatrix of A, which leads to D
=U"'AU=diag[o, oo, . . ., o).
The eigenvalue problems that correspond to the two operators arise as

Lup;(w) = 2 (w), L (u) = 247 (w). (8)

It can be verified that the spectrum of the operators L, and L; is discrete, and that the operators
possess the same set of eigenvalues.

According to Roy [19], the solutions to the associated eigenvalue problem of the backward
Kolmogorov operator L, contain two parts:

(i) Each of the eigenvalues can be expressed as Ay = myoy +---+ m,o,, where m =
(my,my,...,my;), m=m;+my+---+m, in which m; (i=1,2,...,n) are the non-negative
integers.
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(i) The corresponding eigenfunction is found to be an element of the set of multivariate
Hermite polynomials, i.c.,

1 o 1
= Gu(v) = (=" —viC ——viC
V(W) ™) =(=D" exp [ZV v} owl"owy? - - - Owjy" exp[ 2" V] ’
v=U"v, C=UK;'U=K]', w=UK;'u ©)

To determine the function of v, (u), which is the eigenfunction of L; and corresponds to the
same eigenvalue A, Roy [19] shows that if the stochastic system that is described in Eq. (3)
satisfies the detailed balance condition (see Ref. [20])

p(', 7w, 0)py(u) = p(eu, 7| ew’,0)p(w'), py(u) = p,(eu), (10)

then ¥, (u) can be expressed as

m

* — % —(_1y" 0 *
ol = Vi) = " e i)
Vi = i = Newp |~ 1 u'k,

= Nexp [— % VTK_IV] = Nexp [—% wTKvw]. (11)

v

In fact, /},(u) can also be expressed as
V() =y [ [ w™, (12)
i=1

where u;! is the ith row vector of U~!, which is the inverse matrix of U.
From the results in Liberzon and Brockett [18], we know that under the above conditions (a)
and (b), the detailed balance condition can be removed, and then i, (u) can be expressed as

Y = Yo [ Jwfuy™, (13)
i=1

where u,.T is the ith row vector of UT, which is the transpose matrix of U. With this conclusion, it
can be easily verified that if the system matrix A is real and symmetric, without the condition of
detailed balance, Eq. (12) is also tenable. Therefore, in this paper, we remove the condition of
detailed balance.

In fact, the explicit expressions of the eigenfunctions for L, and L; are not necessary. We
assume in this paper that the system that is described in Eq. (3) is defined on domain D, which is a
bounded closed set in R” with its entire boundary 0.D. Being the solutions to the FPK equation
and the Kolmogorov backward equation, respectively, on 0D, both p(u, ¢ | ug, #y) and g(u, z | ug, #o)
are assumed to satisfy the boundary conditions

n'G(uatlu():tO):O, or p(u,t|ll0,[0)=0, UGaD,

0
nivj a() CI(U, t | Up, tO) = 0: or CI(“: t | Up, Z0) = Oa U € aD: (14)
J!
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that correspond to 0D which is called a reflective or absorbing boundary. In Eq. (14), n is a unit
vector that is normal to 0D and

1 0
Gi(u, t|ug, t9) = azu;p(u, 1|y, to) — Vi ap(us t]ug, 7). (15)
]

Furthermore, ¥,,(u) and y;,(u) are also assumed to satisfy the same boundary conditions, which
ensure that iy, (u) and ¥}, (u) are bi-orthogonally normal [20]

I, ml=m2,

{Ymi (W), ‘anz(“» = /Dlpml(u)lp:;ﬁ(u) du = 0pim = {0 ml#£m?. (16)

With these results, the transition probability density of the process u(¢) can be written as

o0

putiu)= > explntlym@ @), 1=0. (17)
This yields the expression of Ry(7) and the covariance matrix of u(z):
_ V7 . - / /
R = [ du [ dula"lptu. )
= ) @), Y@ D [Cu ) ] explintl, (18)

from which we obtain the spectral density function matrices

Su(w) =2 /0 h Ry(7) cos(wt)dr
o0 /lm

2
=- ) <u!#?§(u),lﬁm(U)>[<u,lP§.(u)>]TW,

my=0,...,m,=0

Dy(w) =2 /0 h Ry(7) sin(wt)dt
==Y W Y@ [T (19)

T
12 2
my=0,...,m,=0 /“m +w

For a scalar stochastic function f(u), which is an integrable function of u in the sense that
[oLf @) du< + oo, then

EL ) = [ fapiwdu=o. 20)
The covariance and the spectral density function for f(u) can be obtained as

Ri(x) = /D du /D dw'Lf () (W), 7 )p ()]

> S, Y@y f (), (@) > explim],
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Sr(w) =2 /000 R/ (1) cos(wt)de

2/m
= 3 () SO

m;=0,...,m,=0

Or(w) = 2/000 Rs(7) sin(wt)dr

2
== Y S, v ), w:;m»m(”wz. 21

my=0,...,m,=0

3. Van der Pol-Duffing oscillator excited parametrically by real noise

In this section, we consider a deterministic nonlinear Van der Pol-Duffing oscillator that is
driven parametrically by a real noise process f(u), i.e.,

¥ — &% + w’x + £2yx°x + 2057 = e(wo1x + a2x)f (u), (22)

where f3 is the damping constant, w is the natural frequency, y and J are real parameters, f(u) is an
integrable function of u(¢), which is defined in Eq. (3), and the parameters ¢; and ¢, represent the
noise intensities.

To investigate the stability properties for such a system, an appropriate transformation of the
original system should be undertaken. With the transformation

X=acos¢p, XxX=—awsin¢, =+ wt, ¢, €]l0,nx], (23)

we can obtain a set of differential equations that govern the amplitude process a, phase process ¢,
and the noise process u:

a=ala,d), ¢=dlap), u)=Au()+ W), (24)

where

a,(a, §) = eai(a, p)f () + £ ax(a, P),
D(P) = 0+ e (a, ) (W) + & Pa(a, D),
ai(a, §) = 102a[1 — cos(2¢)] — So1a sin2¢,
ax(a, ¢) = 3 pa[l — cos(2¢)]
— §a@ (@’ — y) cos(4p) — 4w’ cos(2¢) + (3’5 + )},
¢1(a, ¢) =03 sin 2¢ — L a1[1 + cos(29)],

b-(a, p) = g sin 2¢ +% a*{=2(w?5 + ) sin(2¢) + (w*6 — y) sin(4¢)}. (25)
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4. Moment Lyapunov exponent and maximal Lyapunov exponent
4.1. Formulation

In this section, we derive the asymptotic expansions of the moment Lyapunov exponent and the
top Lyapunov exponent for the system that is described in Eq. (22).
Consider the linearization of Eq. (22)

¥ — 2% + w*x = e(wa1x + 02%)f (u). (26)
The following transformation:
X=acos¢, X=-—awsin¢p, p=lna, =+ wt, ¢,pecl0,n] 27)
yields a set of equations for the arguments of a, ¢, and the noise process u(z);
p=p(P) &=u(¢), )= Au)+W(), (28)
where
1) = epn (D) (W) + & (),

$1(D) = 0 + e (D) (W) + P (),
pi(d) = oasin® ¢ —Jou1 sin2¢,  pp(p) = fsin’ ¢,

B = ar5in 29— a1 c05’ b, () = b sin 26, 9)

As ¢(t) and u(?) are both independent of the variable p, the vector process (¢(¢),u(?)) forms a
diffusive process of dimension (n 4 1) with the generator (backward Kolmogorov operator)

L,=Ly+¢el + 82L2,
0 0 0
Ly=L,+o %’ Ly =f(uwg, 3’ L, =¢p % (30)

and the adjoint operator (Fokker—Planck operator)
L} = L} +¢eL} +&°L3,

L= —fw) 2 ¢

— L= —— ¢p. 31
a(b, a¢¢ll’ 2 ad)¢12 ( )

The moment Lyapunov exponent g, , is the principal simple eigenvalue for the operator L,
[13,14], i.e.,

Ly=L,—w

Lofop = 9epf eps (32)
where the L, is defined as
L, = L;+pp,
= Lo+ &(L1 + pf (Wpy) + & (Lo + pppp). (33)
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Although the moment Lyapunov exponent is an important characteristic in the analysis
of the exponential growth rate of the pth moment of the solution process for a linear stochastic
system, it is almost impossible to obtain an explicit expression for it. Therefore, for some
stochastic linear systems that are close to deterministic, efforts have been made to determine the
asymptotic expressions of the maximal Lyapunov exponents and the moment Lyapunov
exponents. Two-dimensional real noise and white noise systems are investigated by Arnold
et al. [15]. The asymptotical expressions of the moment Lyapunov exponents are obtained for
powers of small noise intensity and a small p. Two coupled oscillations that are driven by
a real noise are considered by Namachchivaya et al. [16]. They obtain the small noise expan-
sions for the moment Lyapunov exponents for the powers of a small p. Therefore, as pointed
out by Khasminskii and Moshchuk [14], an approximation that is valid for small values of p
does not allow us to determine the stability index. For two-dimensional Ito stochastic diffe-
rential equations for finite values of p when the system matrix is assumed to have two purely
imaginary eigenvalues, Khasminskii and Moshchuk [14] prove that the pth moment Lyapunov
exponent can be expressed asymptotically for the powers of ¢ that represent the small noise
intensity. The asymptotic series expressions for the finite pth moment Lyapunov exponents of
two coupled oscillators that are driven by real noises are obtained by Namachchivaya and
Roessel [17], who assume that an infinitesimal generator of the noise has an isolated simple zero
eigenvalue.

In this section, we determine the asymptotic expansion of the pth moment Lyapunov exponent
of the system that is described in Eq. (26) for the powers of small ¢ for any finite pth moment. To
consider a model of enhanced generality, the strong mixing condition and the detailed balance
condition are removed. To tackle the complexity that is encountered in the present work, a
perturbation method and the results of the spectral analysis of the Fokker—Planck operator of a
linear filter system are employed. We show that the results that are obtained match those in Ref.
[15], which are for a small pth moment.

4.2. Asymptotic analysis

As the present system matrix possesses a pair of purely imaginary eigenvalues, according to
Khasminskii and Moshchuk [14], we can assume that

9ep = Yop + éd1p +et gngn,p +e
Fep@) =Fop( @) +&f 1))+ + & (P)+--- . (34)
Substituting Eq. (34) into Eq. (32) leads to the following recursive equations:

& ¢ Lof, 0p = 90/ 05

g : Lof'1p = 9gopf1p + 915 0p —2FWp1fo, — Lifops

& Lof, = Gopfap + 915/ 1)+ 92, 0, — (L2 + pp)f o, — (L1 + pf (Wp)f 1,

C Lofsp = 9opf3p + 915 2p + 9251, + 935 0p — (L2 +pp2)f 1, — (L1 +pf Wp1)f 5.

(35)
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We consider first the equation of order €, i.e.,

[L +o ]f 0(P: W) = o uf 0,5(h, ). (36)

0¢

As pj(¢) = 0, from the definition of g, , we know that g, , = 0, and therefore Eq. (36), along with
the periodic boundary condition of the solution function f ,(¢,u), reduces to

[L +o ¢]fop(d> u) =

Sop(@,w) = fo,(¢ + 7). (37)
As the eigenfunctions ¥, (u) of the operator L, form a complete function set [20], we can expand
Sop(¢,u) as a series in terms of Y, (u), ie.,

o0

fopdw= > fAd)m(u). (38)

m=0,...,m,=0

The substitution of Eq. (38) into Eq. (37) leads to the fact that each coefficient f g;)(d)) is the
solution to

g (m)
[w 3gt/m ]f (¢) =
SN = 1o+ m), (39)

in which the only non-zero periodic solution is fff[),(qﬁ) = C, which corresponds to the eigenvalue
40 =0, and C is an integral constant. Thus, 1 ,(¢,u) can be expressed as

fO,p((Z)’ ll) = Cl//O(u) (40)
Furthermore, we can select ¥, = 1 [7], and, without loss of generality, we let
Sop(p,w)=1. (41)

Consider the equation of order ¢ in Eq. (35). The substitution of Eq. (41) into the second
equation of Eq. (35) yields

Lof\ p(¢.w) = g1, — pf (Wp (). (42)
The solvability condition for this equation immediately leads to
00 = I @on@. 05> =p [ o140 [ r@w5w =0, 43)

where ;(u) € Ker(Lj) = {Cy(u): C is an arbitrary constant}. Eq. (42) then reduces to

[L o ¢]f1p(¢ W) = —pf @ (),

f'l,p((p + T, u) :.fl,p((p’ ll). (44)
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After expanding /| ,(¢,u) and f(u) along V,,(u), we obtain

Sip@w=> " (),
miy,...,n, =0
fw= > ™y, (45)
my,....,m,=0
where
S™ = ), i), (46)

Substituting Eq. (45) into Eq. (44) and equating the coefficients of the same eigenfunctions, we
obtain

P +w7ﬂﬂmw> —pf™p (), m#0,

[z+w?pmw> m=0. @7)

In Eq. (47), each f (1'3)(q5) is a m-periodic function of the variable ¢, which can be easily obtained via
a direct integration, i.e.

/19 =<, m=0,
Se =< p i (™ cos 2¢ + ™ sin 29) , 0 (48)
2 —|— 4w? /1m ’ ’
where
C'™ = 2w0) — Imos,  CT = —Qway + ima). (49)

In the first equation of Eq. (48), C; is an integral constant, and it is not difficult to verify that C;
contributes nothing to the expression of the moment Lyapunov exponent. Finally, f ,(¢,u),
which is the solution to Eq. (44), can be expressed as

e8]

fw=Cc+ > M= > (G, (50)

my.my,...mp=0 my,my,...,m,=0
m#0

4.3. Moment Lyapunov exponent and top Lyapunov exponent
Employing the above results, the third equation of Eq. (35) becomes

Lof5)(d,w) = g2, — ppin(¢) — f(w) (1511(<15)a 3 +o1n(P) |f1,(¢, ),
Sfap(@+mw) =15, (), (1)
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in which the solvability condition leads to

0
{Gap = PPi(P) — f(u) [dm % +szl(<l5)]f 1p(@, W), Y5(w) > = 0. (52)
After the integration, we obtain
Gop=D1+ 12+ I3,

1 ’T 1
1=~ opa@iw> =2 [ viwdn [ pu()dp =3 pf,

1 o0

L=-— > _ S @on()gg O Fm ) )
p . ) 7
N m;ﬂ ) { e / [ ()CS) sin 2¢ — C cos 2¢)] qu}
Py | m
= — Z - m;mn_o /L + 4w 2 ( 1 O%)

= (01 + az)Sf(Zco)

> S @pu @y (0, )y

my,my,...,m,=0

p2 = f(m)f(m) T 0 o

I ool

(m) (m)
i

Lo, /0 pu() d<¢>}

2 00 (m) A(m) (m) pM)
4 )mf S 2 N A
= — = ( g + (72) +
8 m mz,Z..;m,, =0 /L + 4o? m
=7 61’ (63 + oS/ 20) + 4 5 P°025/(0), (53)
where
A(m) *
/= Sy ), yp(a) ). (54)
Furthermore, in Eq. (53) the following relationships are applied:
(m) A(m)
S S A
SrQRw) = — Sr(0)=— . 55
(20) :Ozm At YO :OZZO . (55)
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Synthesizing the above results gives

gop = %pﬁ + %p(a% + ag)Sf(2a)) + %sz(af + ag)Sf(2a)) + %pzaéSf(O).

39

(56)

Next, the solution to Eq. (51) is required. Before the derivation, the functions of f ,(¢,u) and

S ,(¢,u) should be expanded along y,(u), i.c.,

fp@w= > (W),

(m,l)

ffew= > > e W),

where

~(m,I) *
= S ),y (w) ).
Substituting Eq. (57) into Eq. (51) and solving the equation, we obtain

FO($) = I cos@) + I sin(@e) + Y cos2) + I'Y sin(2¢),

SO@) = > TR +T0s(9) + T + Tay(@) + Tas(@), 1= 1i#0,
i=1

my ,mz,...,mn:O
m#0

in which 1 ,(¢,u) is determined. The coefficients in Eq. (59) are given in Appendix A.
The fourth equation in Eq. (35) is now considered, i.e.,

Lofs, = gopf3p + G1pf2p + 925/ 1p T 93 0p — L2 +pp2)f 1, — (L1 + pf(Wp))f 5,

in which the solvability condition becomes
<§12,pf1,p + g3,pf0,p —(Ly +sz)f1,p — (L +Pf(“)ﬂl)f2,pa 1//3(“» =0.

After some direct integration, we finally obtain

G2 = = <= (L R @ 2 W) g

= > |+ Dol + )

my,my,....my=0 I1,l,....[,=0

] ~(
—pos ;—'(Afn +20%) + 2p02a)2] A, 2w, 20)

15 370 1, 2 2, 0
+30° 03 A0 (0.0) + 721’ + D02(07 + 73 hmAyy (20,0)

(57)

(58)

(39)

(60)

(61)

(62)
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where
~O (m) zm.D) A0
(A, + 402/ + 40?]
~() f(m)f(m l)f(l) ~) f(m)f(m l)f(l)
A G0, 0) ===~ An(0.0 63
't )= [A3, + 40?1 0,0)= R (63)

Substituting Eq. (43), Eq. (56), and Eq. (62) into the first expression of Eq. (34), we obtain the
asymptotic expansions of the moment Lyapunov exponent and the top Lyapunov exponent

2
Gop = &P ﬁ + < (01 + Uz)Sf(zw)] + [(al + 03)SrQ2w) + 263 (0)] + g3, + (&),

P =0
This result matches the derivation that is described in Eq. (31) of Ref. [15], which is derived for the

case of a small value of p. The top Lyapunov exponent matches the result that is described in Eq.
(9.4.19) of Ref. [2].

= & B B+ %(af +63)SrQ2w)| + o(&?). (64)

5. Almost-sure stability and stability in probability for a nonlinear stochastic system

In this section, the stability properties of the nonlinear stochastic system that is described in Eq.
(22), including the almost-sure stability and the stability in probability, are investigated. By using
the same methods proposed in Section 4, we can derive a standard FPK equation that governs
pP0(a, 7) and the probability density function of the amplitude process a(f) of order ¢°, which is
identical to that which is derived from the stochastic averaging method for the case of a
broadband noise excitation. Based on this FPK equation, we obtain the corresponding Ito
stochastic differential equation that governs the process a(¢), from which the almost-sure stability
condition and the stability in probability condition are examined.

5.1. Formulation

For the nonlinear stochastic system that is described in Eq. (22), it is well known that for the
limit ¢ — 0, the process a(¢) is clearly a slow variable, whereas the process ¢(¢) is a fast variable,
and thus a(r) will not change significantly over a time interval of the order O(1). To investigate the
response of a system over a time interval of order O(¢?), as in Refs. [19,21], the time variable is
scaled as t = /&%, where 7 is a slow time scale. As the vector process (a, ¢,u) forms a diffusive
process of dimension (n + 2), the relevant probability density function p,(a, ¢, u, 1) satisfies the
FPK equation as

[A’:pa(a’ (]5, u, T) = O, (65)
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where
L =Ly+el; + &L,
ok 0 6 ok 0 0 0
Ly=L'—o— — Ly=——¢,——ar ——. 66
As in the case of the linear system, p,(a, ¢, u, 7) is sought as an expansion in powers of ¢
ps(a, ¢a u, ‘L') = pO(a’ d)a u, T) + 8p1(a: (:ba u, ‘L') +-+ gnpn(a’ (»b’ u, T) + - (67)

The substitution of the above expression into Eq. (65) leads to the following sequence of Poisson
equations:

ﬁopo =0, ﬁopl = _f’lpOa iopz = _f’lpl - ﬁzl?o: cee (68)

In addition, it should be noted that each equation with the form ﬁ;p(a,¢,u, 1) = ¢g(a, p,u,1)
satisfies the solvability condition as

1 T
77“_/0 dqb/Dduq(a, ¢,u,7) =0. (69)

We then proceed to investigate the solution to the first equation of Eq. (68), which is the leading
term of asymptotical expansion in Eq. (67). For simplicity, the dependence upon the variable 7 is
omitted in the first two equations of Eq. (68). Being a function of the argument u, py(a, ¢,u) is
expanded along the eigenfunctions of the operator L;, i.e

e8]

polapwy= > pa ) (70)

my,mo,...,n,=0
and each term of pV(q, ¢) satisfies
0
[wad)—l- ] (a,¢p) =0. (71)

Among these pW(a,¢) (m=0,1,...), p(o)(a, ¢) is the only non-zero periodic solution that
corresponds to the conditions of m = 0 and Ay = 0. With this result, the solution to the first
equation of Eq. (68) becomes

Pola, ¢, u) = pi (@i (), (72)

where the coefficient of pg)) (a) remains to be determined from the subsequent solvability condition
of the third equation in Eq. (68).
Substituting Eq. (72) into the right-hand side of the second equation in Eq. (68) results in

[—w@ + L*}pl(a, o.u)

=3 f(u)lﬁf;(u){[ol sin(2¢) + 65 cos(2¢)] [1 - a% + 03 [1 + a% }pgo’(a). (73)
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Substituting the expansion of p,(a, ¢,u)

o0

padwy= > pa P (74)

my,my,...,n,=0

into Eq. (73) leads to

[—w%—i-ﬂm} Wa, ¢) = f"‘){[ol sin(2¢) + o cos(zqsn[l —a%]

0
+ 07 {1 + aaa} }pf)o)(a), (75)

where p(a, ¢) is periodic with 7 and can be obtained through direct integration, i.e.,
) 0 0
pWV(a, ¢) = {[Kfy(zw) cos2¢ + k2 (2w) sin 2¢] [1 - aa—] + Km(0) [1 + aa—} }pg°>(a), (76)
a a
where
/m02 + 200
22+ 4w?
Thus, the function of p,(a, ¢, u) is obtained.

To determine pf) )(a 7) and then p((a, ¢,u, 7), the solvability condition for the third equation in
Eq. (68) is considered, i.e.,

AmO1 — 200>

D (20) = . KO00) = . m(0) == (77)

Jo + 4 m

2n
- / do / [£3py(a dou,7) + Eipola, . w. 0] du = 0, (78)
0 D

Substituting Eq. (72) and Eq. (76) into the above equation, we obtain
2n
ok 3 1
- /0 do /D Lip,(a, ¢,u,7)du = [—gaasz(O) an(zw)(a1 + 62)] —pV(a,7)
1
+ [—ga a%Sf(O) — —asz(2a))(al + 02)] % = Do )(a )

1 1
+[ Sazsf(0)+ Sf(2a))(01+02)} 0(a,1)

- / 2nd¢ / Lypo(a, d,u,7)du

:Epo)(a )—|—|: [))—|—3a6025+ Cl :|

0
5 Py (@.7)

“3a
955,35 (0)
+ —ﬁ+—a o”+<a |py (a,1), (79)
2 8 8
which leads to the following standard FPK equation for pf)o) (a,7), 1.e.,

1
@) = 5 s @ @]~ - [o@p@. D). a.x € 0. 400), (80)
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where

Y (a) = 1’ [035/(0) + 1S, Qw)(a + a3)],

@(a) = talo387(0) +3S,Qw)(a] + 03) + 48] — L’ [3w?S + 7). (81)

This result is identical to that which is derived from the stochastic averaging method for
the case of a broadband real noise excitation. Corresponding to this FPK equation,
the Ito stochastic differential equation for the amplitude process a(t) of order O(c) can be
obtained:

da(z) = @(a)dt + Y(a) dW (1), (82)
where W (r) is the Wiener process of unit intensity, and the function y/(a) is defined as

12
W) = W] = [035/0) 43 5,Coe + )| (83)

5.2. Almost-sure stability

In this subsection, the almost-sure stability, or the stability with probability 1, for the system
that is described in Eq. (82) is examined.
The linearization of Eq. (82) becomes

da(t) = ¢*(a)dt + Y*(a) dW(7),
Y (a) = Y(a),

¢*(a) = 3a[035/(0) + 35/ 2w) (a7 + 03) + 48], (84)

in which the solution is

#(2) = afee) xp { [q’*éa) -l (lﬁ*;a)) L@y )} 85)

It is well known that W(t) ~ (z log log r)l/ 2 as T — oo with probability 1 (w.p.1), and thus we can
conclude that a(t) — 0 as 1 — oo w.p.1, provided that

* * 2
a 2 a
which means that
1B +18,Qw)(e + 03)<0. (87)

This result matches the stability criterion that is derived from the top Lyapunov exponent in
Eq. (64).
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5.3. Stability in probability

In this subsection, the stability in probability for Eq. (82) is examined. Before the analysis, some
relevant definitions are first introduced.

In general, for a stochastic process x(; xo, to), X(f9) = X9, and =1ty ||x(¢; xo, to)|| is a suitable
norm of x(¢; xo, tp). The stability in probability for x(¢; xo, #) is defined in such a way that the
trivial solution x(¢; xo, #p) = 0 is said to be stable in probability if, for every pair of ¢;, &, >0, there
exists a d(eq, &, Xg, o) >0 such that

Probl[||x(#; xo, to)| Z&1]<e, 121, (88)

provided that ||xo|| <J, where x, is assumed to be deterministic. In addition, the trivial solu-
tion is said to be asymptotically stable if and only if it is an exit or an attractive natural
boundary and the other boundary is an entrance or a repulsive natural boundary (see p. 265 in
Ref. [1]).

Almost-sure stability is also called the Lyapunov stability with probability 1, and ensures
that the absolute maxima of almost all of the functions are bounded in the entire time interval
[0, ¢]. In contrast, stability in probability is concerned with the convergence properties of
sample functions at an arbitrary instant in time ¢#>+¢,, and is therefore not of the Lyapunov
type and is generally less stringent. According to Lin and Cai [1], when applied to a linear
system, the convergence of the solution at an arbitrary time instant 7>17, guarantees the same
for the entire time interval, and the two types of stability conditions become equivalent.
In this subsection, we investigate the stability in probability for the nonlinear system that is
described in Eq. (22), and verify whether it is equivalent to the relevant almost-sure stability
condition.

The method used here originates from Ref. [1]. The principle is such that for the diffusion
process a(t), the two boundaries at a = 0 and oo are both singular, and if one of the system
parameters, such as f, changes, then the boundaries will change simultaneously, from which the
stability condition will be determined.

As in Ref. [1], to check the types of singular boundaries for the diffusion process of a(t), the
drift and diffusion coefficients, which are defined in Eq. (81), should first be examined.

The result of ¥?(a) =0 at a = 0 leads us to the information that the boundary at a = 0 is
singular of the first kind. Furthermore, as ¢(0) = 0, the boundary at ¢ =0 is in fact a trap.
According to Ref. [1], for a diffusion process a(t), the diffusion exponent, drift exponent, and
characteristic value at a = 0, which is a singular boundary of the first kind, are defined,
respectively, as:

e the diffusion exponent o;:

¥*(0) = O(la — 0])™, (89)

e the drift exponent f;:

@(0) = O(la — 0))", (90)
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e the characteristic value ¢;:

2 —_ on\=b
o i 20@(@=0)

a—0" wz(a) ’ ©h

that at « = 0 lead to

S(2w)(at + 03) + 4P
a3S7(0) + %Sf(2co)(a% +03)

After validating these results with the relevant terms in Table 4.5.2 in Ref. [1] (see p. 134 of Ref.
[1]), we conclude that if 1> —1S/Q2w)(o] + 03), then ¢;=p;, a=0 is a repulsive natural
boundary, and if < — § S;(2w)(e] + 63), then ¢;<f; and ¢;<1, a =0 is an attractive natural
boundary.

For the boundary at a = 400 under the conditions of f# — 1[63S/(0) + 3 S;(2w)(a7 + 03)] and
|p(4+00)| = 400, from which we know that the boundary of a = 400 is singular of the second
kind at infinity, and that its diffusion and drift exponents and characteristic value are defined,
respectively, in Ref. [1],

u=2 PB=1 o= 92)

e the diffusion exponent o,:

¥*(0) = O(lal)”, (93)

e the drift exponent f,:
¢(0) = O(lal)", (94)

e the characteristic value ¢,:

. 2 o =B,
¢ = lim _ 2?@lal

a—0" lpz(a) (95)

In view of the parameters 6 and 7y, the three quantities at the boundary a = 400 should be
investigated in three separate cases.
Case 1: 6] + |y]|#0 and 3w?5 + y>0. Under this condition, it leads to

B 30?0 + )
a3S7(0) + %Sf(an)(a% +03)’
According to Table 4.54 in Ref. [1, p. 137], we know that the right boundary at ¢ = 400 is an

entrance. Thus, for this case, the stability conditions in probability for the nonlinear stochastic
system that is described in Eq. (82) are given as:

=2, B,=3, ¢

P(400)<0. (96)

o if % p=> — %Sf(2a))(of +03), thena =0 is not asymptotically stable in probability;
o if ;< — §S/(2w)(a1 + ¢3), then a = 0 is asymptotically stable in probability.



46 X.B. Liu, KM. Liew / Journal of Sound and Vibration 285 (2005) 2749

Case 2: |5] + |y|#0 and 3w?5 + y<0. This condition leads to

B 30?5+

035/(0) + 15/Qw)(a} + 03)’
which, according to Table 4.54 in Ref. [1], immediately results in the revelation that the right
boundary at a = +o0 is an exit. Thus, the trivial solution to the nonlinear stochastic system that is

described in Eq. (82) is not asymptotically stable in probability.
Case 3: 6 = y = 0, which means that the system that is described in Eq. (82) is linear, and then

o =2, ﬁr =1, ¢=0. (98)

fxr - 27 ﬁr - 3: cr (p(+oo)>07 (97)

From Table 4.54 in Ref. [1], we know that the boundary at a = +oco is a repulsive natural
boundary, and for this case the stability conditions in probability for the linear stochastic system
that is described in Eq. (82) (6 = y = 0) are the same as for the nonlinear system, i.e.,

o if % p=— %Sf(2w)(a% +63), then a =0 is not asymptotically stable in probability;
oif ;< — gSf(2w)(af + 63), then a = 0 is asymptotically stable in probability.

In summarizing the foregoing result, we conclude that under the condition of f# — }T[G%Sf(O) +
3S/(2w)(a1 + 03)], the asymptotic stability conditions in probability of the trivial solutions for
both the linear and nonlinear (|6] + |y|#0 and 3w?6 +y>0) stochastic systems match the
condition of the almost-sure stability for the same linear stochastic system.

6. Conclusions

In this paper, we investigated the stability properties of a nonlinear Duffing-Van der Pol
oscillator that is excited parametrically by a real noise, including the moment Lyapunov
exponent, the maximal Lyapunov exponent, and the stability in probability. The real noise
excitation is assumed to be an integrable function of the output of a linear filter system,
which is an n-dimensional Ornstein—Uhlenbeck vector process. In this study, we removed
the detailed balance condition and the strong mixing condition, which is the prerequisite
for the stochastic averaging method. For the case of an arbitrary finite real number p, a
perturbation method and the spectrum representation of the Fokker—Planck operator of the
linear filter system are employed to derive the asymptotic expansion of the moment Lyapunov
exponent g(p, xo) and the top Lyapunov exponent, which match the results of Arnold et al. [15]
for the case of a small p. Furthermore, we also examine the stability properties of a nonlinear
stochastic system. The standard FPK equation that governs the amplitude process a(t) is
obtained, and is identical to that which is derived from the stochastic averaging method
for the case of a broadband noise excitation. It should be noted that the method that is used
in this paper can also be applied to many other stochastic systems for which stochastic
averaging methods are not available. Using the method that is proposed by Lin and Cai [1],
the almost-sure stability and the stability in probability for the relevant nonlinear stochastic
system are examined.
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Appendix A. The coefficients in the expression of f° (2"]')) (¢)

The coefficients in the expression of f (2‘3))(q'>) are

1

I = 52401 = )00) — 51025 + 2p),
1

1Y = 5261 = ) eCw) - 010:5C))(—p* +2p),

ry = %g {—a2p(61SQw) + 26,P2w) + 615(0)) + 201201 P2w) — 62SQ2w))},

ry = %g {02p((201 + 62)SQw) + 325(0)) — 261(01SQw) + 26,P2w))}, (A.])

and

1) = fj (T8 () + Ta(d) + Ts(d) + T, + Tos(d)), [ = Z i#0,
i=1

my,my,...,mp=0

m#0

rd ) = 4 (p 2) 2 AYQw, 40){(6? — 63w — 0102 m}(4w cos (4) — Iy sin (4¢)),

r (1)2(¢) MT_DAS.)Q@: 4w){(a% — aé)ﬂum + 4010w} (4 cos(4¢) + 4w sin(4¢)),
U]
r04() = 520 (00, cos (26) — rsin (24)
< {PO2(01 /gy + C2im® + 2010%) + Im01 (027 — 2010)},
U]
¢ = -2 M( 1c0s(2h) + 2w sin(2¢))

x{po2(G2/m, — G1m® + 2620%) — JmG1(G1 /m + 20200)},

AR 2w, 0
¢ =2 #{ (30312 + 8030 + 0122) + 225(0] + D), (A.2)
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where
(m) m-D
AP Qw,40) = — i) 5 :
(A + 40?4} + 160?)
(m) 7(m.D
AYQw,20) = — S7T - :
(Vi + 4025 + 40?)
(m) 7(m.D (m) 7(m.D
AY2w, 0 _ S A%(0,0 =L. A3
m( , ) ()\,fn—f—4(,()2)}vl’ m( 5 ) /lmil ( )
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