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Abstract

In this paper, we consider a Van der Pol–Duffing oscillator that is excited parametrically by a small
intensity real noise, which is assumed to be an integrable function of an n-dimensional Ornstein–Uhlenbeck
vector process that is an output of a linear filter system. The stability properties include the moment
Lyapunov exponent gðp; x0Þ and the maximal Lyapunov exponent, and the stability in probability are
examined. To study a model of enhanced generality, we remove both the detailed balance condition and the
strong mixing condition. In the case of an arbitrary finite real number p, we employ the perturbation
method and a spectrum representation of the Fokker–Planck operator of the linear filter system to
construct asymptotic expansions of the pth moment Lyapunov exponent and the top Lyapunov exponent.
The same methods are also used for a nonlinear stochastic system to obtain the FPK (Fokker–Planck–
Kolmogonov) equation for the amplitude process, which is identical to the one that is derived from the
stochastic averaging method in the case of a broadband noise excitation. On the basis of this FPK equation,
we also examine the almost-sure stability condition of the Ito stochastic differential equation for the
amplitude process, which matches the result that is derived from the maximal Lyapunov exponent. Finally,
the method proposed by Lin and Cai (Probabilistic Structural Dynamics, Advanced Theory and
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Application, McGraw-Hill, New York, 1995) is adopted to examine the stability in probability of the
amplitude process for the nonlinear Ito differential equation.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The maximal Lyapunov exponent has been effectively employed as an important index in
defining the stochastic bifurcation point for a random dynamical system in the probability 1 sense,
which is called the dynamic bifurcation point [1,2]. This is mainly attributed to the fact that the
Lyapunov exponent characterizes the exponential rate of change of the response of a random
dynamical system, and therefore the sample or the almost-sure stability of the stationary solution
of a random dynamical problem depends on the sign of the maximal Lyapunov exponent. A
general method for exactly evaluating the maximal Lyapunov exponent of a linear Ito stochastic
differential equation was first presented by Khasminskii [3], and has been successfully employed
for two-dimensional Ito stochastic systems by Kozin and Prodromou [4], Nishioka [5],
Ariaratnam and Xie [6], and many other researchers.
In the case of ergodic and real noise excitations, there are some results that refer to the

asymptotic expansions of top Lyapunov exponents, most of which are due to Arnold et al. [7],
Namachchivaya and Roessel [8], Doyle and Namachchivaya [9], and Liu and Liew [10–12]. For a
real noise system that does not meet the strong mixing condition, the stochastic averaging method
is not available, and one has to resort to a perturbation method [7]. However, even for an almost-
sure stable system, there is a probability that the mean square response for the system may still
exceed some threshold and may grow exponently, which implies that the mean square response is
unstable.
Let x(t,x0) be a solution to a random dynamical system. To describe the exponential growth

rate of its pth ðp40Þ moment, we can define the moment Lyapunov exponent as

gðp;x0Þ ¼ lim
t!1

1

t
log Ekxðt; x0Þk

p; p 2 R; (1)

which implies that if gðp;x0Þo0; then Ekxðt;x0Þk
p ! 0 as t ! 1; whereas if gðp; x0Þ40; then

Ekxðt; x0Þk
p ! 1 as t ! 1: In Ref. [13], it has been shown that, under the conditions specified,

the limit in Eq. (1) exists and is independent of x0: It can then be expressed as g(p), which is a
convex analytic function of p2R, g(p)/p is increasing, and

l ¼
qg

qp

����
p¼0

¼ lim
t!1

1

t
log kxðt; x0Þk

p; p 2 R; (2)

which is the maximal Lyapunov exponent.
In accordance with the large-deviation theory [2,14], if there is a non-zero solution d of the

equation g(p)=0, then it is unique and is called the stability index. It has been shown that if the
trivial solution x=0 of an Ito linear stochastic differential equation is almost-sure stable, then
the probability of exit from the ball kxkor has the order of kxkd for x!0 for any r40; and
the solution x=0 is exponentially p-stable for pod and exponentially p-unstable for p4d;
which results in the stability condition for the pth moment.
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Comparatively, the problems that arise in the asymptotic analysis of moment Lyapunov
exponents become much more complicated than those that arise in the analysis of maximal
Lyapunov exponents, and furthermore there are not as many existing results for moment
Lyapunov exponents as for maximal Lyapunov exponents. For a white and real noises excited
two-dimensional system and a system of two coupled oscillators that is driven by a real noise,
Arnold et al. [15] and Namachchivaya et al. [16] obtain the asymptotic expansions of the pth
moment Lyapunov exponents in the case of small noise intensity and a small p. The idea is that
one can obtain the asymptotic expansion in powers of the small noise intensity for the maximal
Lyapunov exponent l=qg(0)/qp. The same is also true for qng(0)/qpn: Finally, one can obtain the
Taylor series of the pth moment Lyapunov exponent in terms of a small p. These formulas,
however, are rather complicated, and the approximation is only valid for a small p, which does
not allow us to compute, for example, the stability index.
Khasminskii and Moshchuk [14] consider a two-dimensional system with small white noise

excitations. They prove that for a system in which the system matrix has two purely imaginary
eigenvalues, the pth moment Lyapunov exponent possesses an asymptotic expansion in terms of
the small noise intensity for a finite value of p. For a system of two coupled oscillators that is
driven by real noises, Namachchivaya and Roessel [17] obtain the asymptotic expansion of the
moment Lyapunov exponent for a finite p. In Ref. [17], the extension of the perturbation method
that was introduced by Arnold et al. [7] is applied.
In this paper, we consider a Van der Pol–Duffing oscillator that is excited parametrically by a

small intensity real noise, which is assumed to be an integrable function of an n-dimensional
Ornstein–Uhlenbeck vector process that is an output of a linear filter system. A detailed study is
carried out on the stability properties, including the pth moment Lyapunov exponent g(p,x0), the
maximal Lyapunov exponent, and the stability in probability. In this work, we propose a model of
enhanced generality that removes the detailed balance condition and also the strong mixing
condition that is the prerequisite for the stochastic averaging method. To tackle the difficulties
encountered, for an arbitrary finite p, the perturbation method and a spectrum representation of
the Fokker–Planck operator for the linear filter system are employed to construct the asymptotic
expansion of the pth moment Lyapunov exponent and the top Lyapunov exponent. Using the
same methods for a nonlinear stochastic system, we obtain the FPK equation of the amplitude
process, which is identical to that which is derived from the stochastic averaging method in the
case of a broadband noise excitation. Based on this FPK equation, we can examine the almost-
sure stability condition of the amplitude process, which matches the result that is derived from the
expression of the maximal Lyapunov exponent. To investigate the stability in probability of the
amplitude process, the method proposed by Lin and Cai [1] is adopted in this study.
2. Spectral analysis for a linear filter system

In this section, we review the existing results for the spectral analysis of an n-dimensional linear
filter system. Consider a general linear filter system, which is governed by the following stochastic
differential system:

_uðtÞ ¼ AuðtÞ þ _WðtÞ; (3)
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where A=(aij)n	n; aij are the real or complex numbers, _W tð Þ is an n-dimensional zero-mean
Gaussian white noise with E ð _Wðt þ tÞ _WðtÞÞ ¼ VdðtÞ; V=(vij)n	n is a symmetric, non-negative
defined constant matrix, and u=(u1; u2; . . . ; unÞ

T is an Ornstein–Uhlenbeck vector process, which
is in fact a zero-mean stationary Gaussian diffusion process. The matrix A is assumed to have a
complete set of eigenvalues a1; . . . ; an; along with the corresponding eigenvectors e1; . . . ; en; which
means that aiaaj

(iaj). Furthermore, as in Ref. [18], the following two conditions are assumed in
the present study:
(a)
 Each eigenvalue ai is assumed to possess a negative real part, i.e., RðaiÞo0 ði ¼ 1; 2; . . . ; nÞ:

(b)
 ðA; ~VÞ is a controllable pair, i.e., rankð ~V;A ~V; . . . ;An
1 ~VÞ ¼ n; where V ¼ ~V ~V

T
:

In fact, the first condition assures that the equilibrium solution u=0 for the relevant
deterministic system is Lyapunov asymptotically stable.
For the diffusion process u(t), the differential generator (backward Kolmogorov operator) Lu

and its adjoint, the Fokker–Planck operator L�
u; are, respectively, given by

Lu ¼ aijuj
q
qui

þ
1

2
vij

q2

quiquj

; L�
u ¼

q
qui

½aijuj 

1

2
vij

q2

quiquj

; (4)

where the repeated indices indicate the usual summation. Correspondingly, the Kolmogorov
backward equation, the FPK equation, and their initial conditions are

q
qt0

þ Lu0

� �
qðu; t j u0; t0Þ ¼ 0;

q
qt

þ L�
u

� �
pðu; t j u0; t0Þ ¼ 0;

qðu; t j u0; tÞ ¼ dðu0 
 uÞ; pðu; t0 j u0; t0Þ ¼ dðu
 u0Þ: ð5Þ

For the system that is described in Eq. (3), the stationary probability density function for uðtÞ;
which is the solution to the degenerate FPK equation qpðu; t j u0; t0Þ=qt ¼ 0; is

psðuÞ ¼ N exp½
1
2
uTK
1

u u; N ¼ ð2pÞ
n=2
½det Ku

1=2; (6)

where N is the normalization constant, and Ku ¼ /uðtÞðuðtÞÞTS is the covariance matrix, which is
the solution of the steady-state variance equation

AKu þ KuA
T
þ V ¼ 0: (7)

In this study, U=(e1; e2; . . . ; en) is assumed to be the relevant eigenmatrix of A, which leads to D
=U
1AU=diag[a1; a2; . . . ; an].
The eigenvalue problems that correspond to the two operators arise as

LuclðuÞ ¼ lclðuÞ; L�
uc

�
l0 ðuÞ ¼ l0c�

l0 ðuÞ: (8)

It can be verified that the spectrum of the operators Lu and L�
u is discrete, and that the operators

possess the same set of eigenvalues.
According to Roy [19], the solutions to the associated eigenvalue problem of the backward

Kolmogorov operator Lu contain two parts:
(i) Each of the eigenvalues can be expressed as lm ¼ m1a1 þ � � � þ mnan; where m ¼

ðm1;m2; . . . ;mnÞ; m ¼ m1 þ m2 þ � � � þ mn; in which mi ði ¼ 1; 2; . . . ; nÞ are the non-negative
integers.
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(ii) The corresponding eigenfunction is found to be an element of the set of multivariate
Hermite polynomials, i.e.,

cmðuÞ ¼ GmðvÞ ¼ ð
1Þm exp
1

2
vTCv

� �
qm

qwm1
1 qwm2

2 � � � qwmn
n
exp 


1

2
vTCv

� �
;

v ¼ U
1u; C ¼ UTK
1
u U ¼ K
1

v ; w ¼ UTK
1
u u: ð9Þ

To determine the function of c�
m uð Þ; which is the eigenfunction of L�

u and corresponds to the
same eigenvalue lm; Roy [19] shows that if the stochastic system that is described in Eq. (3)
satisfies the detailed balance condition (see Ref. [20])

pðu0; t j u; 0ÞpsðuÞ ¼ pð�u; t j �u0; 0Þpsðu
0Þ; psðuÞ ¼ psð�uÞ; (10)

then c�
mðuÞ can be expressed as

c�
mðeuÞ ¼ c�

0ðuÞcmðuÞ ¼ ð
1Þm
qm

qwm1
1 � � � qwmn

n
c�
0ðuÞ;

c�
0ðuÞ ¼ c�

0ðeuÞ ¼ N exp 

1

2
uTK
1

u u

� �

¼ N exp 

1

2
vTK
1

v v

� �
¼ N exp 


1

2
wTKvw

� �
: ð11Þ

In fact, c�
mðuÞ can also be expressed as

c�
mðuÞ ¼ c�

0ðuÞ
Yn

i¼1

ðu
1i uÞmi ; (12)

where u
1i is the ith row vector of U
1; which is the inverse matrix of U.
From the results in Liberzon and Brockett [18], we know that under the above conditions (a)

and (b), the detailed balance condition can be removed, and then c�
mðuÞ can be expressed as

c�
mðuÞ ¼ c0ðuÞ

Yn

i¼1

ðuTi uÞ
mi ; (13)

where uTi is the ith row vector of UT; which is the transpose matrix of U. With this conclusion, it
can be easily verified that if the system matrix A is real and symmetric, without the condition of
detailed balance, Eq. (12) is also tenable. Therefore, in this paper, we remove the condition of
detailed balance.
In fact, the explicit expressions of the eigenfunctions for Lu and L�

u are not necessary. We
assume in this paper that the system that is described in Eq. (3) is defined on domain D, which is a
bounded closed set in Rn with its entire boundary qD. Being the solutions to the FPK equation
and the Kolmogorov backward equation, respectively, on qD, both pðu; t j u0; t0Þ and qðu; t j u0; t0Þ
are assumed to satisfy the boundary conditions

n �Gðu; t j u0; t0Þ ¼ 0; or pðu; t j u0; t0Þ ¼ 0; u 2 qD;

nivij

q
quj0

qðu; t j u0; t0Þ ¼ 0; or qðu; t j u0; t0Þ ¼ 0; u0 2 qD; ð14Þ
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that correspond to qD which is called a reflective or absorbing boundary. In Eq. (14), n is a unit
vector that is normal to qD and

Giðu; t j u0; t0Þ ¼ aijujpðu; t j u0; t0Þ 

1

2
vij

q
quj

pðu; t j u0; t0Þ: (15)

Furthermore, cmðuÞ and c�
mðuÞ are also assumed to satisfy the same boundary conditions, which

ensure that cmðuÞ and c�
mðuÞ are bi-orthogonally normal [20]

/cm1ðuÞ;c
�
m2ðuÞS ¼

Z
D

cm1ðuÞc
�
m2ðuÞdu ¼ dm1;m2 ¼

1; m1 ¼ m2;

0; m1am2:

(
(16)

With these results, the transition probability density of the process u(t) can be written as

pðu; t j u0Þ ¼
X1

m1¼0;...;mn¼0

exp½lmtcmðu
0Þc�

mðuÞ; tX0: (17)

This yields the expression of RuðtÞ and the covariance matrix of uðtÞ:

RuðtÞ ¼
Z

D

du

Z
D

du0½uTu0pðu; tju0Þpsðu
0Þ

¼
X1

m1¼0;...;mn¼0

/uc�
0ðuÞ;cmðuÞS½/u;c�

mðuÞST exp½lmt; ð18Þ

from which we obtain the spectral density function matrices

SuðoÞ ¼ 2
Z 1

0

RuðtÞ cosðotÞdt

¼ 

X1

m1¼0;...;mn¼0

/uc�
0ðuÞ;cmðuÞS½/u;c�

mðuÞST
2lm

l2m þ o2
;

UuðoÞ ¼ 2
Z 1

0

RuðtÞ sinðotÞdt

¼ 

X1

m1¼0;...;mn¼0

/uc�
0ðuÞ;cmðuÞS½/u;c�

mðuÞST
2o

l2m þ o2
: ð19Þ

For a scalar stochastic function f ðuÞ; which is an integrable function of u in the sense thatR
D
½ f ðuÞ2c�

0ðuÞduoþ1; then

E½ f ðuÞ ¼

Z
D

f ðuÞc�
0ðuÞdu ¼ 0: (20)

The covariance and the spectral density function for f ðuÞ can be obtained as

Rf ðtÞ ¼
Z

D

du

Z
D

du0½ f ðuÞf ðu0Þpðu; tju0Þpsðu
0Þ

¼
X1

m1¼0;...;mn¼0

/f ðuÞc�
0ðuÞ;cmðuÞS/f ðuÞ;c�

mðuÞS exp½lmt;
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Sf ðoÞ ¼ 2
Z 1

0

Rf ðtÞ cosðotÞdt

¼ 

X1

m1¼0;...;mn¼0

/f ðuÞc�
0ðuÞ;cmðuÞS/f ðuÞ;c�

mðuÞS
2lm

l2m þ o2
;

Ff ðoÞ ¼ 2
Z 1

0

Rf ðtÞ sinðotÞdt

¼ 

X1

m1¼0;...;mn¼0

/f ðuÞc�
0ðuÞ;cmðuÞS/f ðuÞ;c�

mðuÞS
2o

l2m þ o2
: ð21Þ
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3. Van der Pol–Duffing oscillator excited parametrically by real noise

In this section, we consider a deterministic nonlinear Van der Pol–Duffing oscillator that is
driven parametrically by a real noise process f ðuÞ; i.e.,

€x 
 �2b _x þ o2x þ �2gx2 _x þ �2d _x3 ¼ �ðos1x þ s2 _xÞf ðuÞ; (22)

where b is the damping constant, o is the natural frequency, g and d are real parameters, f ðuÞ is an
integrable function of uðtÞ; which is defined in Eq. (3), and the parameters s1 and s2 represent the
noise intensities.
To investigate the stability properties for such a system, an appropriate transformation of the

original system should be undertaken. With the transformation

x ¼ a cos f; _x ¼ 
ao sin f; f ¼ jþ ot; f;j 2 ½0; p; (23)

we can obtain a set of differential equations that govern the amplitude process a; phase process f;
and the noise process u:

_a ¼ a�ða;fÞ; _f ¼ f�ða;fÞ; _uðtÞ ¼ AuðtÞ þ _WðtÞ; (24)

where

a�ða;fÞ ¼ �a1ða;fÞf ðuÞ þ �2a2ða;fÞ;

f�ðfÞ ¼ oþ �f1ða;fÞf ðuÞ þ �2f2ða;fÞ;

a1ða;fÞ ¼ 1
2
s2a½1
 cosð2fÞ 
 1

2
s1a sin 2f;

a2ða;fÞ ¼ 1
2
ba½1
 cosð2fÞ


 1
8

a3fðo2d
 gÞ cosð4fÞ 
 4o2d cosð2fÞ þ ð3o2dþ gÞg;

f1ða;fÞ ¼
1
2
s2 sin 2f
 1

2
s1½1þ cosð2fÞ;

f2ða;fÞ ¼
b
2
sin 2fþ

1

8
a2f
2ðo2dþ gÞ sinð2fÞ þ ðo2d
 gÞ sinð4fÞg: ð25Þ
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4. Moment Lyapunov exponent and maximal Lyapunov exponent

4.1. Formulation

In this section, we derive the asymptotic expansions of the moment Lyapunov exponent and the
top Lyapunov exponent for the system that is described in Eq. (22).
Consider the linearization of Eq. (22)

€x 
 �2b _x þ o2x ¼ �ðos1x þ s2 _xÞf ðuÞ: (26)

The following transformation:

x ¼ a cosf; _x ¼ 
ao sin f; r ¼ ln a; f ¼ jþ ot; f;j 2 ½0; p (27)

yields a set of equations for the arguments of a; f; and the noise process uðtÞ;

_r ¼ rl�ðfÞ; _f ¼ fl�ðfÞ; _uðtÞ ¼ AuðtÞ þ _WðtÞ; (28)

where

rl�ðfÞ ¼ �rl1ðfÞf ðuÞ þ �2rl2ðfÞ;

fl�ðfÞ ¼ oþ �fl1ðfÞf ðuÞ þ �2fl2ðfÞ;

rl1ðfÞ ¼ s2 sin
2 f
 1

2
s1 sin 2f; rl2ðfÞ ¼ b sin2 f;

fl1ðfÞ ¼
1
2
s2 sin 2f
 s1 cos2 f; fl2ðfÞ ¼

b
2
sin 2f: ð29Þ

As fðtÞ and uðtÞ are both independent of the variable r; the vector process ðfðtÞ; uðtÞÞ forms a
diffusive process of dimension ðn þ 1Þ with the generator (backward Kolmogorov operator)

L� ¼ L0 þ �L1 þ �2L2;

L0 ¼ Lu þ o
q
qf

; L1 ¼ f ðuÞfl1

q
qf

; L2 ¼ fl2

q
qf

ð30Þ

and the adjoint operator (Fokker–Planck operator)

L�
� ¼ L�

0 þ �L�
1 þ �2L�

2;

L�
0 ¼ L�

u 
 o
q
qf

; L�
1 ¼ 
f ðuÞ

q
qf

fl1; L�
2 ¼ 


q
qf

fl2: ð31Þ

The moment Lyapunov exponent g�;p is the principal simple eigenvalue for the operator Lp

[13,14], i.e.,

Lpf �;p ¼ g�;pf �;p; (32)

where the Lp is defined as

Lp ¼ L� þ pr�
¼ L0 þ �ðL1 þ pf ðuÞrl1Þ þ �2ðL2 þ prl2Þ: ð33Þ
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Although the moment Lyapunov exponent is an important characteristic in the analysis
of the exponential growth rate of the pth moment of the solution process for a linear stochastic
system, it is almost impossible to obtain an explicit expression for it. Therefore, for some
stochastic linear systems that are close to deterministic, efforts have been made to determine the
asymptotic expressions of the maximal Lyapunov exponents and the moment Lyapunov
exponents. Two-dimensional real noise and white noise systems are investigated by Arnold
et al. [15]. The asymptotical expressions of the moment Lyapunov exponents are obtained for
powers of small noise intensity and a small p: Two coupled oscillations that are driven by
a real noise are considered by Namachchivaya et al. [16]. They obtain the small noise expan-
sions for the moment Lyapunov exponents for the powers of a small p: Therefore, as pointed
out by Khasminskii and Moshchuk [14], an approximation that is valid for small values of p
does not allow us to determine the stability index. For two-dimensional Ito stochastic diffe-
rential equations for finite values of p when the system matrix is assumed to have two purely
imaginary eigenvalues, Khasminskii and Moshchuk [14] prove that the pth moment Lyapunov
exponent can be expressed asymptotically for the powers of � that represent the small noise
intensity. The asymptotic series expressions for the finite pth moment Lyapunov exponents of
two coupled oscillators that are driven by real noises are obtained by Namachchivaya and
Roessel [17], who assume that an infinitesimal generator of the noise has an isolated simple zero
eigenvalue.
In this section, we determine the asymptotic expansion of the pth moment Lyapunov exponent

of the system that is described in Eq. (26) for the powers of small � for any finite pth moment. To
consider a model of enhanced generality, the strong mixing condition and the detailed balance
condition are removed. To tackle the complexity that is encountered in the present work, a
perturbation method and the results of the spectral analysis of the Fokker–Planck operator of a
linear filter system are employed. We show that the results that are obtained match those in Ref.
[15], which are for a small pth moment.
4.2. Asymptotic analysis

As the present system matrix possesses a pair of purely imaginary eigenvalues, according to
Khasminskii and Moshchuk [14], we can assume that

g�;p ¼ g0;p þ �g1;p þ � � � þ �ngn;p þ � � � ;

f �;pðfÞ ¼ f 0;pðfÞ þ �f 1;pðfÞ þ � � � þ �nf �;pðfÞ þ � � � : ð34Þ

Substituting Eq. (34) into Eq. (32) leads to the following recursive equations:

�0 : L0f 0;p ¼ g0;pf 0;p;

�1 : L0f 1;p ¼ g0;pf 1;p þ g1;pf 0;p 
 pf ðuÞr1f 0;p 
 L1f 0;p;

�2 : L0f 2;p ¼ g0;pf 2;p þ g1;pf 1;p þ g2;pf 0;p 
 ðL2 þ pr2Þf 0;p 
 ðL1 þ pf ðuÞr1Þf 1;p;

�3 : L0f 3;p ¼ g0;pf 3;p þ g1;pf 2;p þ g2;pf 1;p þ g3;pf 0;p 
 ðL2 þ pr2Þf 1;p 
 ðL1 þ pf ðuÞr1Þf 2;p:

..

.
ð35Þ
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We consider first the equation of order �0; i.e.,

Lu þ o
q
qf

� �
f 0;pðf; uÞ ¼ g0;pf 0;pðf; uÞ: (36)

As rl0ðfÞ ¼ 0; from the definition of g0;p we know that g0;p ¼ 0; and therefore Eq. (36), along with
the periodic boundary condition of the solution function f 0;pðf; uÞ; reduces to

Lu þ o
q
qf

� �
f 0;pðf; uÞ ¼ 0;

f 0;pðf; uÞ ¼ f 0;pðfþ p; uÞ: ð37Þ

As the eigenfunctions cmðuÞ of the operator Lu form a complete function set [20], we can expand
f 0;pðf; uÞ as a series in terms of cmðuÞ; i.e.,

f 0;pðf; uÞ ¼
X1

m1¼0;...;mn¼0

f
ðmÞ

0;p ðfÞcmðuÞ: (38)

The substitution of Eq. (38) into Eq. (37) leads to the fact that each coefficient f
ðmÞ

0;p ðfÞ is the
solution to

o
q
qf

þ lm

� �
f
ðmÞ

0;p ðfÞ ¼ 0;

f
ðmÞ

0;p ðfÞ ¼ f
ðmÞ

0;p ðfþ pÞ; ð39Þ

in which the only non-zero periodic solution is f
ð0Þ
0;pðfÞ ¼ C; which corresponds to the eigenvalue

l0 ¼ 0; and C is an integral constant. Thus, f 0;pðf; uÞ can be expressed as

f 0;pðf; uÞ ¼ Cc0ðuÞ: (40)

Furthermore, we can select c0 ¼ 1 [7], and, without loss of generality, we let

f 0;pðf; uÞ ¼ 1: (41)

Consider the equation of order � in Eq. (35). The substitution of Eq. (41) into the second
equation of Eq. (35) yields

L0 f 1;pðf; uÞ ¼ g1;p 
 pf ðuÞrl1ðfÞ: (42)

The solvability condition for this equation immediately leads to

g1;p ¼ /pf ðuÞrl1ðfÞ;c
�
0ðuÞS ¼ p

Z p

0

rl1ðfÞdf
Z

D

f ðuÞc�
0ðuÞdu ¼ 0; (43)

where c�
0ðuÞ 2 KerðL

�
0Þ ¼ fCc�

0ðuÞ: C is an arbitrary constantg: Eq. (42) then reduces to

Lu þ o
q
qf

� �
f 1;pðf; uÞ ¼ 
pf ðuÞrl1ðfÞ;

f 1;pðfþ p; uÞ ¼ f 1;pðf; uÞ: ð44Þ
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After expanding f 1;pðf; uÞ and f ðuÞ along cmðuÞ; we obtain

f 1;pðf; uÞ ¼
X1

m1;...;mn¼0

f
ðmÞ

1;p ðfÞcmðuÞ;

f ðuÞ ¼
X1

m1;...;mn¼0

f ðmÞcmðuÞ; ð45Þ

where

f ðmÞ
¼ /f ðuÞ;c�

mðuÞS: (46)

Substituting Eq. (45) into Eq. (44) and equating the coefficients of the same eigenfunctions, we
obtain

lm þ o
q
qf

� �
f
ðmÞ

1;p ðfÞ ¼ 
pf ðmÞrl1ðfÞ; ma0;

lm þ o
q
qf

� �
f
ðmÞ

1;p ðfÞ ¼ 0; m ¼ 0: ð47Þ

In Eq. (47), each f
ðmÞ

1;p ðfÞ is a p-periodic function of the variable f; which can be easily obtained via
a direct integration, i.e.

f
ðmÞ

1;p ðfÞ ¼

f
ð0Þ
1;pðfÞ ¼ C1; m ¼ 0;



p

2
f ðmÞ ðC

ðmÞ

1 cos 2fþ C
ðmÞ

2 sin 2fÞ

l2m þ 4o2
þ

s2
lm

" #
; ma0;

8>><
>>: (48)

where

C
ðmÞ

1 ¼ 2os1 
 lms2; C
ðmÞ

2 ¼ 
ð2os2 þ lms1Þ: (49)

In the first equation of Eq. (48), C1 is an integral constant, and it is not difficult to verify that C1
contributes nothing to the expression of the moment Lyapunov exponent. Finally, f 1;pðf; uÞ;
which is the solution to Eq. (44), can be expressed as

f 1;pðf; uÞ ¼ C1 þ
X1

m1 ;m2 ;...;mn¼0

ma0

f
ðmÞ

1;p ðfÞcmðuÞ ¼
X1

m1;m2;...;mn¼0

f
ðmÞ

1;p ðfÞcmðuÞ: (50)

4.3. Moment Lyapunov exponent and top Lyapunov exponent

Employing the above results, the third equation of Eq. (35) becomes

L0f 2;pðf; uÞ ¼ g2;p 
 prl2ðfÞ 
 f ðuÞ fl1ðfÞ
q
qf

þ prl1ðfÞ
� �

f 1;pðf; uÞ;

f 2;pðfþ p; uÞ ¼ f 2;pðf; uÞ; ð51Þ
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in which the solvability condition leads to

/g2;p 
 prl2ðfÞ 
 f ðuÞ fl1

q
qf

þ prl1ðfÞ
� �

f 1;pðf; uÞ;c
�
0ðuÞS ¼ 0: (52)

After the integration, we obtain

g2;p ¼ I1 þ I2 þ I3;

I1 ¼
1

p
/prl2ðfÞ;c

�
0ðuÞS ¼

p

p

Z
D

c�
0ðuÞdu

Z p

0

rl2ðfÞdf ¼
1

2
pb;

I2 ¼
1

p

X1
m1;m2;...;mn¼0

/f ðuÞfl1ðfÞ
q
qf

f
ðmÞ

1;p ðf; uÞ;c
�
0ðuÞS

¼
p

p

X1
m1;m2;...;mn¼0

f ðmÞf̂
ðmÞ

l2m þ 4o2

Z p

0

½fl1ðfÞðC
ð1Þ
m sin 2f
 Cð2Þ

m cos 2fÞdf

( )

¼ 

p

4

X1
m1;m2;...;mn¼0

lmf ðmÞf̂
ðmÞ

l2m þ 4o2
ðs21 þ s22Þ

" #

¼
1

8
pðs21 þ s22ÞSf ð2oÞ;

I3 ¼
p

p

X1
m1;m2;...;mn¼0

/f ðuÞrl1ðfÞf
ðmÞ

1;p ðf; uÞ;c
�
0ðuÞS

¼ 

p2

2p

X1
m1;m2;...;mn¼0

f ðmÞf̂
ðmÞ

l2m þ 4o2

Z p

0

½rl1ðfÞðC
ð1Þ
m cos 2fþ Cð2Þ

m sin 2fÞdf

(

þ
f ðmÞf̂

ðmÞ

lm
s2

Z p

0

rl1ðfÞdf

)

¼ 

p2

8

X1
m1;m2;...;mn¼0

lmf ðmÞf̂
ðmÞ

l2m þ 4o2
ðs21 þ s22Þ þ

2f ðmÞf̂
ðmÞ

lm
s22

" #

¼
1

16
p2ðs21 þ s22ÞSf ð2oÞ þ

1

8
p2s22Sf ð0Þ; ð53Þ

where

f̂
ðmÞ

¼ / f ðuÞcmðuÞ;c
�
0ðuÞS: (54)

Furthermore, in Eq. (53) the following relationships are applied:

Sf ð2oÞ ¼ 

X1

m1¼0;...;mn¼0

2lmf ðmÞf̂
ðmÞ

l2m þ 4o2
; Sf ð0Þ ¼ 


X1
m1¼0;...;mn¼0

2f ðmÞf̂
ðmÞ

lm
: (55)
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Synthesizing the above results gives

g2;p ¼ 1
2

pbþ 1
8

pðs21 þ s22ÞSf ð2oÞ þ 1
16

p2ðs21 þ s22ÞSf ð2oÞ þ 1
8

p2s22Sf ð0Þ: (56)

Next, the solution to Eq. (51) is required. Before the derivation, the functions of f 2;pðf; uÞ and
f ðuÞf 1;pðf; uÞ should be expanded along cmðuÞ; i.e.,

f 2;pðf; uÞ ¼
X1

m1;...;mn¼1

f
ðmÞ

2;p ðfÞcmðuÞ;

f ðuÞf 1;pðf; uÞ ¼
X1

m1;...;mn¼0

X1
l1;...;ln¼0

½ f
ðmÞ

1;p ðfÞ ~f
ðm;lÞ

clðuÞ; (57)

where

~f
ðm;lÞ

¼ /f ðuÞcmðuÞ;c
�
l ðuÞS: (58)

Substituting Eq. (57) into Eq. (51) and solving the equation, we obtain

f
ð0Þ
2;pðfÞ ¼ Gð0Þ

1 cosð4fÞ þ Gð0Þ
2 sinð4fÞ þ Gð0Þ

3 cosð2fÞ þ Gð0Þ
4 sinð2fÞ;

f
ðlÞ

2;pðfÞ ¼
X1

m1 ;m2 ;...;mn¼0

ma0

ðGðlÞ

m;1ðfÞ þ GðlÞ

m;2ðfÞ þ GðlÞ

m;3ðfÞ þ GðlÞ

m;4ðfÞ þ GðlÞ

m;5ðfÞÞ; l ¼
Xn

i¼1

lia0; (59)

in which f 2;pðf; uÞ is determined. The coefficients in Eq. (59) are given in Appendix A.
The fourth equation in Eq. (35) is now considered, i.e.,

L0f 3;p ¼ g0;pf 3;p þ g1;pf 2;p þ g2;pf 1;p þ g3;p f 0;p 
 ðL2 þ pr2Þf 1;p 
 ðL1 þ pf ðuÞr1Þf 2;p; (60)

in which the solvability condition becomes

/g2;pf 1;p þ g3;pf 0;p 
 ðL2 þ pr2Þf 1;p 
 ðL1 þ pf ðuÞr1Þf 2;p;c
�
0ðuÞS ¼ 0: (61)

After some direct integration, we finally obtain

g3;p ¼
1

p
/
 ðL1 þ pf ðuÞr1Þf 2;p;c

�
0ðuÞSf;u

¼
X1

m1;m2;...;mn¼0

X1
l1;l2;...;ln¼0



1

8
pðp þ 2Þðs21 þ s22Þ 2s1oðlm þ llÞ½

�


ps2
ll
lm

ðl2m þ 2o2Þ þ 2ps2o2
�
L
_ ðlÞ

m ð2o; 2oÞ

þ
1

8
p3s32L

_ ðlÞ

m ð0; 0Þ þ
1

16
p2ðp þ 2Þs2ðs21 þ s22ÞlmL

_ ðlÞ

m ð2o; 0Þ
�
; ð62Þ
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where

L
_ ðlÞ

m ð2o; 2oÞ ¼
f ðmÞ ~f

ðm;lÞ
f̂
ðlÞ

½l2m þ 4o2½l2l þ 4o2
;

L
_ ðlÞ

m ð2o; 0Þ ¼
f ðmÞ ~f

ðm;lÞ
f̂
ðlÞ

½l2m þ 4o2ll
; L

_ ðlÞ

m ð0; 0Þ ¼
f ðmÞ ~f

ðm;lÞ
f̂
ðlÞ

lmll
: (63)

Substituting Eq. (43), Eq. (56), and Eq. (62) into the first expression of Eq. (34), we obtain the
asymptotic expansions of the moment Lyapunov exponent and the top Lyapunov exponent

g�;p ¼ �2p
1

2
bþ

1

8
ðs21 þ s22ÞSf ð2oÞ

� �
þ

�2p2

16
½ðs21 þ s22ÞSf ð2oÞ þ 2s22Sf ð0Þ þ �3g3;p þ oð�3Þ;

l ¼
qg�ðpÞ

qp

����
p¼0

¼ �2
1

2
bþ

1

8
ðs21 þ s22ÞSf ð2oÞ

� �
þ oð�3Þ: (64)

This result matches the derivation that is described in Eq. (31) of Ref. [15], which is derived for the
case of a small value of p: The top Lyapunov exponent matches the result that is described in Eq.
(9.4.19) of Ref. [2].
5. Almost-sure stability and stability in probability for a nonlinear stochastic system

In this section, the stability properties of the nonlinear stochastic system that is described in Eq.
(22), including the almost-sure stability and the stability in probability, are investigated. By using
the same methods proposed in Section 4, we can derive a standard FPK equation that governs
pð0Þ0ða; tÞ and the probability density function of the amplitude process aðtÞ of order �0; which is
identical to that which is derived from the stochastic averaging method for the case of a
broadband noise excitation. Based on this FPK equation, we obtain the corresponding Ito
stochastic differential equation that governs the process aðtÞ; from which the almost-sure stability
condition and the stability in probability condition are examined.
5.1. Formulation

For the nonlinear stochastic system that is described in Eq. (22), it is well known that for the
limit � ! 0; the process aðtÞ is clearly a slow variable, whereas the process fðtÞ is a fast variable,
and thus aðtÞ will not change significantly over a time interval of the order Oð1Þ: To investigate the
response of a system over a time interval of order Oð�2Þ; as in Refs. [19,21], the time variable is
scaled as t ¼ t=�2; where t is a slow time scale. As the vector process ða;f; uÞ forms a diffusive
process of dimension ðn þ 2Þ; the relevant probability density function p�ða;f; u; tÞ satisfies the
FPK equation as

L̂
�

�p�ða;f; u; tÞ ¼ 0; (65)
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where

L̂
�

� ¼ L̂
�

0 þ �L̂
�

1 þ �2L̂
�

2;

L̂
�

0 ¼ L�
u 
 o

q
qf

; L̂
�

1 ¼ 
f ðuÞ
q
qf

f1 þ
q
qa

a1

� �
; L̂

�

2 ¼ 

q
qf

f2 

q
qa

a2 

q
qt

: (66)

As in the case of the linear system, p�ða;f; u; tÞ is sought as an expansion in powers of �

p�ða;f; u; tÞ ¼ p0ða;f; u; tÞ þ �p1ða;f; u; tÞ þ � � � þ �npnða;f; u; tÞ þ � � � : (67)

The substitution of the above expression into Eq. (65) leads to the following sequence of Poisson
equations:

L̂
�

0p0 ¼ 0; L̂
�

0p1 ¼ 
L̂
�

1p0; L̂
�

0p2 ¼ 
L̂
�

1p1 
 L̂
�

2p0; . . . : (68)

In addition, it should be noted that each equation with the form L̂
�

0pða;f; u; tÞ ¼ qða;f; u; tÞ
satisfies the solvability condition as

1

p

Z p

0

df
Z

D

du qða;f; u; tÞ ¼ 0: (69)

We then proceed to investigate the solution to the first equation of Eq. (68), which is the leading
term of asymptotical expansion in Eq. (67). For simplicity, the dependence upon the variable t is
omitted in the first two equations of Eq. (68). Being a function of the argument u; p0ða;f; uÞ is
expanded along the eigenfunctions of the operator L�

u; i.e.,

p0ða;f; uÞ ¼
X1

m1;m2;...;mn¼0

pð0Þ
m ða;fÞc�

mðuÞ (70)

and each term of pð0Þ
m ða;fÞ satisfies


o
q
qf

þ lm

� �
pð0Þm ða;fÞ ¼ 0: (71)

Among these pð0Þ
m ða;fÞ ðm ¼ 0; 1; . . .Þ; p

ð0Þ
0 ða;fÞ is the only non-zero periodic solution that

corresponds to the conditions of m ¼ 0 and l0 ¼ 0: With this result, the solution to the first
equation of Eq. (68) becomes

p0ða;f; uÞ ¼ p
ð0Þ
0 ðaÞc�

0ðuÞ; (72)

where the coefficient of p
ð0Þ
0 ðaÞ remains to be determined from the subsequent solvability condition

of the third equation in Eq. (68).
Substituting Eq. (72) into the right-hand side of the second equation in Eq. (68) results in


o
q
qf

þ L�
u

� �
p1ða;f; uÞ

¼
1

2
f ðuÞc�

0ðuÞ ½s1 sinð2fÞ þ s2 cosð2fÞ 1
 a
q
qa

� �
þ s2 1þ a

q
qa

� �� �
p
ð0Þ
0 ðaÞ: ð73Þ



ARTICLE IN PRESS

X.B. Liu, K.M. Liew / Journal of Sound and Vibration 285 (2005) 27–4942
Substituting the expansion of p1ða;f; uÞ

p1ða;f; uÞ ¼
X1

m1;m2;...;mn¼0

pð1Þm ða;fÞc�
mðuÞ (74)

into Eq. (73) leads to


o
q
qf

þ lm

� �
pð1Þ
m ða;fÞ ¼

1

2
f̂
ðmÞ

½s1 sinð2fÞ þ s2 cosð2fÞ 1
 a
q
qa

� ��

þs2 1þ a
q
qa

� ��
p
ð0Þ
0 ðaÞ; ð75Þ

where pð1Þ
m ða;fÞ is periodic with p and can be obtained through direct integration, i.e.,

pð1Þ
m ða;fÞ ¼

1

2
½kð1Þm ð2oÞ cos 2fþ kð2Þm ð2oÞ sin 2f 1
 a

q
qa

� �
þ kmð0Þ 1þ a

q
qa

� �� �
p
ð0Þ
0 ðaÞ; (76)

where

kð1Þm ð2oÞ ¼
lms2 þ 2os1
l2m þ 4o2

; kð2Þm ð2oÞ ¼
lms1 
 2os2
l2m þ 4o2

; kmð0Þ ¼
s2
lm

: (77)

Thus, the function of p1ða;f; uÞ is obtained.
To determine p

ð0Þ
0 ða; tÞ and then p0ða;f; u; tÞ; the solvability condition for the third equation in

Eq. (68) is considered, i.e.,




Z 2p

0

df
Z

D

½L̂
�

1p1ða;f; u; tÞ þ L̂
�

2p0ða;f; u; tÞdu ¼ 0: (78)

Substituting Eq. (72) and Eq. (76) into the above equation, we obtain




Z 2p

0

df
Z

D

L̂
�

1p1ða;f; u; tÞdu ¼ 

3

8
as22Sf ð0Þ 


1

16
aSf ð2oÞðs21 þ s22Þ

� �
q
qa

p
ð0Þ
0 ða; tÞ

þ 

1

8
a2s22Sf ð0Þ 


1

16
a2Sf ð2oÞðs21 þ s22Þ

� �
q2

qa2
p
ð0Þ
0 ða; tÞ

þ 

1

8
s22Sf ð0Þ þ

1

16
Sf ð2oÞðs21 þ s22Þ

� �
p
ð0Þ
0 ða; tÞ




Z 2p

0

df
Z

D

L̂
�

2p0ða;f; u; tÞdu

¼
q
qt

p
ð0Þ
0 ða; tÞ þ

1

2
bþ

3

8
a2o2dþ

1

8
a2g

� �
a
q
qa

p
ð0Þ
0 ða; tÞ

þ
1

2
bþ

9

8
a2o2 þ

3

8
a2

� �
p
ð0Þ
0 ða; tÞ; ð79Þ

which leads to the following standard FPK equation for p
ð0Þ
0 ða; tÞ; i.e.,

q
qt

p
ð0Þ
0 ða; tÞ ¼

1

2

q2

qa2
½c2ðaÞpð0Þ0 ða; tÞ 


q
qa

½jðaÞpð0Þ
0 ða; tÞ; a; t 2 ½0;þ1Þ; (80)
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where

c2ðaÞ ¼ 1
4
a2½s22Sf ð0Þ þ

1
2
Sf ð2oÞðs21 þ s22Þ;

jðaÞ ¼ 1
8

a s22Sf ð0Þ þ
3
2
Sf ð2oÞðs21 þ s22Þ þ 4b

� �

 1
8

a3½3o2dþ g: (81)

This result is identical to that which is derived from the stochastic averaging method for
the case of a broadband real noise excitation. Corresponding to this FPK equation,
the Ito stochastic differential equation for the amplitude process aðtÞ of order Oð�0Þ can be
obtained:

daðtÞ ¼ jðaÞdtþ cðaÞdW ðtÞ; (82)

where W ðtÞ is the Wiener process of unit intensity, and the function cðaÞ is defined as

cðaÞ ¼ ½c2ðaÞ1=2 ¼
a

2
s22Sf ð0Þ þ

1

2
Sf ð2oÞðs21 þ s22Þ

� �1=2
: (83)

5.2. Almost-sure stability

In this subsection, the almost-sure stability, or the stability with probability 1, for the system
that is described in Eq. (82) is examined.
The linearization of Eq. (82) becomes

daðtÞ ¼ j�ðaÞdtþ c�
ðaÞdW ðtÞ;

c�
ðaÞ ¼ cðaÞ;

j�ðaÞ ¼ 1
8
a½s22Sf ð0Þ þ

3
2
Sf ð2oÞðs21 þ s22Þ þ 4b; (84)

in which the solution is

aðtÞ ¼ aðt0Þ exp
j�ðaÞ

a


1

2

c�
ðaÞ

a

� �2" #
tþ

c�
ðaÞ

a
W ðtÞ

( )
: (85)

It is well known thatW ðtÞ � ðt log log tÞ1=2 as t ! 1 with probability 1 (w.p.1), and thus we can
conclude that aðtÞ ! 0 as t ! 1 w.p.1, provided that

j�ðaÞ

a


1

2

c�
ðaÞ

a

� �2
o0; (86)

which means that

1
2
bþ 1

8
Sf ð2oÞðs21 þ s22Þo0: (87)

This result matches the stability criterion that is derived from the top Lyapunov exponent in
Eq. (64).
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5.3. Stability in probability

In this subsection, the stability in probability for Eq. (82) is examined. Before the analysis, some
relevant definitions are first introduced.
In general, for a stochastic process xðt; x0; t0Þ; xðt0Þ ¼ x0; and tXt0; kxðt; x0; t0Þk is a suitable

norm of xðt; x0; t0Þ: The stability in probability for xðt;x0; t0Þ is defined in such a way that the
trivial solution xðt;x0; t0Þ ¼ 0 is said to be stable in probability if, for every pair of �1; �240; there
exists a dð�1; �2;x0; t0Þ40 such that

Prob½kxðt; x0; t0ÞkX�1p�2; tXt0; (88)

provided that kx0kpd; where x0 is assumed to be deterministic. In addition, the trivial solu-
tion is said to be asymptotically stable if and only if it is an exit or an attractive natural
boundary and the other boundary is an entrance or a repulsive natural boundary (see p. 265 in
Ref. [1]).
Almost-sure stability is also called the Lyapunov stability with probability 1, and ensures

that the absolute maxima of almost all of the functions are bounded in the entire time interval
½t0; t: In contrast, stability in probability is concerned with the convergence properties of
sample functions at an arbitrary instant in time tXt0; and is therefore not of the Lyapunov
type and is generally less stringent. According to Lin and Cai [1], when applied to a linear
system, the convergence of the solution at an arbitrary time instant tXt0 guarantees the same
for the entire time interval, and the two types of stability conditions become equivalent.
In this subsection, we investigate the stability in probability for the nonlinear system that is
described in Eq. (22), and verify whether it is equivalent to the relevant almost-sure stability
condition.
The method used here originates from Ref. [1]. The principle is such that for the diffusion

process aðtÞ; the two boundaries at a ¼ 0 and 1 are both singular, and if one of the system
parameters, such as b; changes, then the boundaries will change simultaneously, from which the
stability condition will be determined.
As in Ref. [1], to check the types of singular boundaries for the diffusion process of aðtÞ; the

drift and diffusion coefficients, which are defined in Eq. (81), should first be examined.
The result of c2ðaÞ ¼ 0 at a ¼ 0 leads us to the information that the boundary at a ¼ 0 is

singular of the first kind. Furthermore, as jð0Þ ¼ 0; the boundary at a ¼ 0 is in fact a trap.
According to Ref. [1], for a diffusion process aðtÞ; the diffusion exponent, drift exponent, and
characteristic value at a ¼ 0; which is a singular boundary of the first kind, are defined,
respectively, as:
�
 the diffusion exponent al:

c2ð0Þ ¼ Oðja 
 0jÞal ; (89)
�
 the drift exponent bl :

jð0Þ ¼ Oðja 
 0jÞbl ; (90)
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�
 the characteristic value cl :

cl ¼ lim
a!0þ

2jðaÞða 
 0Þal
bl

c2ðaÞ
; (91)

that at a ¼ 0 lead to

al ¼ 2; bl ¼ 1; cl ¼ 1þ
Sf ð2oÞðs21 þ s22Þ þ 4b

s22Sf ð0Þ þ
1
2

Sf ð2oÞðs21 þ s22Þ
: (92)

After validating these results with the relevant terms in Table 4.5.2 in Ref. [1] (see p. 134 of Ref.
[1]), we conclude that if 1

2
bX
 1

8
Sf ð2oÞðs21 þ s22Þ; then clXbl ; a ¼ 0 is a repulsive natural

boundary, and if 1
2
bo
 1

8
Sf ð2oÞðs21 þ s22Þ; then clobl and clo1; a ¼ 0 is an attractive natural

boundary.
For the boundary at a ¼ þ1 under the conditions of ba
 1

4
½s22Sf ð0Þ þ

3
2

Sf ð2oÞðs21 þ s22Þ and
jjðþ1Þj ¼ þ1; from which we know that the boundary of a ¼ þ1 is singular of the second
kind at infinity, and that its diffusion and drift exponents and characteristic value are defined,
respectively, in Ref. [1],
�
 the diffusion exponent ar:

c2ð0Þ ¼ OðjajÞar ; (93)
�
 the drift exponent br:

jð0Þ ¼ OðjajÞbr ; (94)
�
 the characteristic value cr:

cr ¼ lim
a!0þ



2jðaÞjajar
br

c2ðaÞ
: (95)

In view of the parameters d and g; the three quantities at the boundary a ¼ þ1 should be
investigated in three separate cases.

Case 1: jdj þ jgja0 and 3o2dþ g40: Under this condition, it leads to

ar ¼ 2; br ¼ 3; cr ¼
3o2dþ g

s22Sf ð0Þ þ
1
2

Sf ð2oÞðs21 þ s22Þ
; jðþ1Þo0: (96)

According to Table 4.54 in Ref. [1, p. 137], we know that the right boundary at a ¼ þ1 is an
entrance. Thus, for this case, the stability conditions in probability for the nonlinear stochastic
system that is described in Eq. (82) are given as:
�
 if 1
2
bX
 1

8
Sf ð2oÞðs21 þ s22Þ; then a ¼ 0 is not asymptotically stable in probability;
�
 if 12 bo
 1
8Sf ð2oÞðs21 þ s22Þ; then a ¼ 0 is asymptotically stable in probability.
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Case 2: jdj þ jgja0 and 3o2dþ go0: This condition leads to

ar ¼ 2; br ¼ 3; cr ¼
3o2dþ g

s22Sf ð0Þ þ
1
2

Sf ð2oÞðs21 þ s22Þ
; jðþ1Þ40; (97)

which, according to Table 4.54 in Ref. [1], immediately results in the revelation that the right
boundary at a ¼ þ1 is an exit. Thus, the trivial solution to the nonlinear stochastic system that is
described in Eq. (82) is not asymptotically stable in probability.

Case 3: d ¼ g ¼ 0; which means that the system that is described in Eq. (82) is linear, and then

ar ¼ 2; br ¼ 1; cr ¼ 0: (98)

From Table 4.54 in Ref. [1], we know that the boundary at a ¼ þ1 is a repulsive natural
boundary, and for this case the stability conditions in probability for the linear stochastic system
that is described in Eq. (82) ðd ¼ g ¼ 0Þ are the same as for the nonlinear system, i.e.,
�
 if 1
2
bX
 1

8
Sf ð2oÞðs21 þ s22Þ; then a ¼ 0 is not asymptotically stable in probability;
�
 if 1
2
bo
 1

8
Sf ð2oÞðs21 þ s22Þ; then a ¼ 0 is asymptotically stable in probability.
In summarizing the foregoing result, we conclude that under the condition of ba
 1
4
½s22Sf ð0Þ þ

3
2

Sf ð2oÞðs21 þ s22Þ; the asymptotic stability conditions in probability of the trivial solutions for
both the linear and nonlinear (jdj þ jgja0 and 3o2dþ g40) stochastic systems match the
condition of the almost-sure stability for the same linear stochastic system.
6. Conclusions

In this paper, we investigated the stability properties of a nonlinear Duffing-Van der Pol
oscillator that is excited parametrically by a real noise, including the moment Lyapunov
exponent, the maximal Lyapunov exponent, and the stability in probability. The real noise
excitation is assumed to be an integrable function of the output of a linear filter system,
which is an n-dimensional Ornstein–Uhlenbeck vector process. In this study, we removed
the detailed balance condition and the strong mixing condition, which is the prerequisite
for the stochastic averaging method. For the case of an arbitrary finite real number p; a
perturbation method and the spectrum representation of the Fokker–Planck operator of the
linear filter system are employed to derive the asymptotic expansion of the moment Lyapunov
exponent gðp;x0Þ and the top Lyapunov exponent, which match the results of Arnold et al. [15]
for the case of a small p: Furthermore, we also examine the stability properties of a nonlinear
stochastic system. The standard FPK equation that governs the amplitude process aðtÞ is
obtained, and is identical to that which is derived from the stochastic averaging method
for the case of a broadband noise excitation. It should be noted that the method that is used
in this paper can also be applied to many other stochastic systems for which stochastic
averaging methods are not available. Using the method that is proposed by Lin and Cai [1],
the almost-sure stability and the stability in probability for the relevant nonlinear stochastic
system are examined.
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Appendix A. The coefficients in the expression of f
ðmÞ

2;p ðfÞ

The coefficients in the expression of f
ðmÞ

2;p ðfÞ are

Gð0Þ
1 ¼

1

32

p

o
fðs21 
 s22ÞFð2oÞ 
 s1s2Sð2oÞgð
p2 þ 2pÞ;

Gð0Þ
2 ¼

1

32

p

o
fðs21 
 s22ÞFð2oÞ 
 s1s2Sð2oÞgð
p2 þ 2pÞ;

Gð0Þ
3 ¼

1

16

p

o
f
s2pðs1Sð2oÞ þ 2s2Fð2oÞ þ s1Sð0ÞÞ þ 2s1ð2s1Fð2oÞ 
 s2Sð2oÞÞg;

Gð0Þ
4 ¼

1

16

p

o
fs2pðð2s1 þ s2ÞSð2oÞ þ s2Sð0ÞÞ 
 2s1ðs1Sð2oÞ þ 2s2Fð2oÞÞg; (A.1)

and

f
ðlÞ

2;pðfÞ ¼
X1

m1 ;m2 ;...;mn¼0

ma0

fGðlÞ

m;1ðfÞ þ GðlÞ

m;2ðfÞ þ GðlÞ

m;3ðfÞ þ GðlÞ

m;4ðfÞ þ GðlÞ

m;5ðfÞg; l ¼
Xn

i¼1

lia0;

GðlÞ

m;1ðfÞ ¼
pðp 
 2Þ

4
LðlÞ
m ð2o; 4oÞfðs

2
1 
 s22Þo
 s1s2lmgð4o cos ð4fÞ 
 ll sin ð4fÞÞ;

GðlÞ

m;2ðfÞ ¼ 

pðp 
 2Þ

8
LðlÞ
m ð2o; 4oÞfðs

2
1 
 s22Þlm þ 4s1s2ogðll cosð4fÞ þ 4o sinð4fÞÞ;

GðlÞ

m;3ðfÞ ¼
p

2

LðlÞ
m ð2o; 2oÞ

lm
ð2o cos ð2fÞ 
 ll sin ð2fÞÞ

	fps2ðs1l
2
m þ s2lmoþ 2s1o2Þ þ lms1ðs2lm 
 2s1oÞg;

GðlÞ

m;4ðfÞ ¼ 

p

2

LðlÞ
m ð2o; 2oÞ

lm
ðll cosð2fÞ þ 2o sinð2fÞÞ

	fps2ðs2l
2
m 
 s1lmoþ 2s2o2Þ 
 lms1ðs1lm þ 2s2oÞg;

GðlÞ

m;5ðfÞ ¼
p

8

LðlÞ
m ð2o; 0Þ
lm

fpð3s22l
2
m þ 8s22o

2 þ s21l
2
mÞ þ 2l

2
mðs

2
1 þ s22Þg; (A.2)
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where

LðlÞ
m ð2o; 4oÞ ¼

f ðmÞ ~f
ðm;lÞ

ðl2m þ 4o2Þðl2l þ 16o2Þ
;

LðlÞ
m ð2o; 2oÞ ¼

f ðmÞ ~f
ðm;lÞ

ðl2m þ 4o2Þðl2l þ 4o2Þ
;

LðlÞ
m ð2o; 0Þ ¼

f ðmÞ ~f
ðm;lÞ

ðl2m þ 4o2Þll
; LðlÞ

m ð0; 0Þ ¼
f ðmÞ ~f

ðm;lÞ

lmll
: (A.3)
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